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• Designed for SwissFEL, but with synchrotron 

applications in mind

• Charge integrating

• Shares EIGER design
- Pixel size 75x75 μm

- One ASIC = 256x256 pixels

- One module = 4x2 ASICs = 1024x512 pixels

• Adaptive gain

- High dynamic range

- Single photon sensitivity

Jungfrau Detector
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Dark 
current 

(pedestal)

Leonarski et al., Nat Methods, 15, 799-804 (2018)

JF4M at X06SA / SLS



• Photon counting detectors are 
state-of-the-art for conventional 
MX

• Jungfrau can improve results for 
certain particular areas:
- Low energy MX (≤ 6 keV)
- Threshold limitations in HPC

- High dose-rate experiments
- Count-rate limitation in HPC

• Jungfrau is necessary for sources 
with short, intense pulses:
- XFEL
- Pink beam and chopper

Jungfrau for Macromolecular Crystallography
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• Photon counting detectors introduce 
imprecisions for pixels with high photon 
rate due to pile-up effect

• In practice with a photon counting 
detector, for a well diffracting crystal one 
needs to attenuate beam and slow down 
measurement to get the best performance 
(see Casanas et al., Acta Cryst, D72, 2016)

High Dose-rate Strategy
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• Photon counting detectors introduce 
imprecisions for pixels with high photon 
rate due to pile-up effect

• In practice with a photon counting 
detector, for a well diffracting crystal one 
needs to attenuate beam and slow down 
measurement to get the best performance 
(see Casanas et al., Acta Cryst, D72, 2016)

• Jungfrau has no such limitation

• Jungfrau + DLSR, better magnets and novel 
sample delivery methods:
- Higher beamline throughput
- Fragment screening methods (<10s/xtal) 
- Routinely 100% flux and 

50-100o/s with good data

High Dose-rate Strategy
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0101010111110011Pixel output in JF:

0001010111110011Gain: 00:G0   01:G1   11:G2

ADC value: 0001010111110011

Photon number: = !"# $ %&'&()*+
,*-.∗%01)1. &.&2,3

Gain and pedestal factors are 
specific for pixel and gain setting

Prior calibration

Dedicated dark run
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0101010111110011Pixel output in JF:

0001010111110011Gain: 00:G0   01:G1   11:G2

ADC value: 0001010111110011

Photon number: = !"# $ %&'&()*+
,*-.∗%01)1. &.&2,3

G0 pedestal varies with time and 
needs to be tracked
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0101010111110011Pixel output in JF:

0001010111110011Gain: 00:G0   01:G1   11:G2

ADC value: 0001010111110011

Photon number: = !"# $ %&'&()*+
,*-.∗%01)1. &.&2,3

Pedestal increases with longer 
integration time and higher 

temperature
(higher framerate is always better)

Redford et al., JINST, 13, C11006

Detector restarted after 
pedestal data taking

Photons

Pedestal
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0101010111110011Pixel output in JF:
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0101010111110011Pixel output in JF:

0001010111110011Gain: 00:G0   01:G1   11:G2

ADC value: 0001010111110011

Photon number: = !"# $ %&'&()*+
,*-.∗%01)1. &.&2,3

Floating point number
- Negative counts possible (not handled 

by data processing software at the 
moment)

- Fractional counts relevant (charge 
sharing)
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• Currently, both raw data and converted data are stored

• Raw data do not compress very well

• Raw data are necessary for detector development

• Raw data will most likely not benefit end user

• Converted data are already of very good quality

• For user operation only converted data should be kept and these will be very 
similar to data produced by EIGER

- Currently we imitate EIGER very well (REST interface and HDF5)

Jungfrau Data Conversion
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• Fast operation is necessary for good detector performance
- 1.1 kHz at the moment, 2.4 kHz next year

• Pedestal values depend on temperature of the sensor and should be collected 
within a short delay from the experiment

• One needs to convert ADUs to photons to add frames together:
- 5916 ADU in G0 + 300 ADU in G1 = ?

• Since conversion factors are specific for pixel, gain setting and detector 
conditions, hardware lookup tables cannot be used for that purpose

• One needs a floating point unit: CPU, GPU or Field Programmable Gate Array 
(FPGA)

Jungfrau Data Conversion Challenge
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• Data flow for 4M detector:

- 4,194,304 pixels x 16-bit = 8 MB
- 8 MB * 1.136 kHz =   9 GB/s (  72 Gbit/s or   8x10 GbE links)
- 8 MB * 2.400 kHz = 19 GB/s (153 Gbit/s or 16x10 GbE links)

• Raw data need to be received by a computer, before calculations can be 
performed on CPU/GPU

• There is no space for transmission control protocol (TCP) overhead, so if frames 
are not received, they are lost

• x86-64/Linux machines are not designed for real time applications

• With HPE DL580 Gen10 (4x12C Intel Xeon 6148 + 1.5 TB of RAM) we can handle 
both data receiving and data conversion for 4M @ 1.1 kHz, but not 
simultaneously

Jungfrau Data Conversion Challenge
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• Input data
- Placed in 4 RAM disks (2 modules per RAM disk)
- Separate files per module
- Modules (even pixels) are independent for conversion purpose

• Output data
- Compressed HDF5 file with NeXuS (Dectris flavor) metadata for Albula/Neggia
- Compression operates on full images, so needs to combine all modules in one 

place
- It is currently impossible to have separate HDF5 files for each region

Converter Architecture
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Frames

Module 0

Module 7

Image 1 Image 2

Geometry 
(gaps, 

multipixels)

Pedestal 
and gain Summation

Module: 1024x512
Module coordinates

Module: 1030x514
4M detector coordinates
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• 32 converter threads (4 per module)

• 16 writer threads

• Single instruction multiple data optimizations (AVX-512 for Intel Xeon)

• Protein crystal 

- 87290 frames (+3000 pedestal)

- 3 s pedestal

- ~76 s of data collection

* - throughput based on input frame size only, i.e. 8 MB/frame time

• Execution time includes all steps, from reading raw data to writing final HDF5

• Compression time is non-deterministic (depends on data entropy)

Total Performance
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Summation Execution [s] Per frame [us] Throughput* [GB/s]
1 41.7 478 17.5

5 19.2 220 38.1

10 15.3 175 47.9

20 17.3 198 42.4



Core Utilization – Intel VTune
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Summation of 10

Summation of 1



Floating-Point Unit Load – Intel VTune
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Summation of 10 Summation of 1



Microarchitecture Utilization – Intel VTune
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Summation of 10 Summation of 1



Data Challenge Conclusions
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• Data receiving needs to be offloaded by network boards with FPGA 

chips, writing raw frames directly to memory without CPU/kernel 

involvement

• Jungfrau 4M @ 1.1 kHz possible in real time

• Jungfrau 10M @ 2.4 kHz – most likely impossible with a single PC

• Computational complexity is very limited (3% of FPU utilization)

• Memory transfers are the limiting factor

- GPU is not easy answer, as PCI Express is a bottleneck 

- More severe problem for multi-PC system

- Splitting data files for 2D regions could help a lot

• Architectures optimized for higher data throughput are needed 

(IBM POWER) or hybrid architectures FPGA+Xeon / FPGA+ARM
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High data rate challenge of Jungfrau is driven by operational reasons, mainly related 
to dark current, however solving the challenge will benefit MX scientific goals 

High dose-rate strategy requires fast framerate detectors to achieve reasonable phi-
slicing – to get 0.10o/image one needs:

1.0 kHz for full area of the detector at 100o/s rotation speed 
2.0 kHz for full area of the detector at 200o/s rotation speed 

2.4 kHz for full area of the detector at 360o/s rotation speed à 0.15o/image

Data processing will need to follow and we already need to think on 
GPU/FPGA/TPU/? implementations, due to Moore’s Law limitations
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• Virtual datasets would allow data from separate modules could be compressed and written 
independently, without a need to gather all data before

• Parallelization is highly limited by lack of fully thread-safe libhdf5

• Signed integer for photon counts: pedestal distribution can result in negative counts

• Amplification factor (gain) in metadata: Jungfrau can report partial (half, quarter) photons 
in case of charge sharing, fixed-point format (2, 4, 8 or 16 counts per photon) would be 
better and easier than floating point storage

• No count rate correction and per pixel saturation level

• Compression
- Bitshuffle: AVX-512 instructions library, FPGA implementation should be trivial
- Hardware accelerated compression (IBM POWER9, NVIDIA GPUs)

• Sparse data format: assuming 0 or 1 photons per pixel/frame Jungfrau allows to calculate 
energy and position with precision higher than one pixel for each photon

• Metadata: For XFEL applications each frame is associated with metadata – saving these 
results in a very poor performance

HDF5 Format Practicalities
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