The Gold Standard at NSLS-II

Dale Kreitler: dkreitler@bnl.gov HDRMX, 22Aug2020

Slides by Jean Jakoncic, Dale Kreitler

What It Is That We Do ?

- 2 MX beamlines: AMX and FMX in operation since 2017-01
- Support challenging projects: microcrystals, opaque medium/membrane proteins, complexes
- Each beamline sees up to 2 groups per day
- Local / Remote / Automated
- Collection protocols
 - Raster
 - Rotation (standard)
 - Vector (distribute dose)
 - Multiple (small crystals in mesh)
 - Serial (loop/mesh/jets)
- Capacity: 384 Spine samples

Beamlines Characteristics

Two independent beamlines with overlapping and complementary capabilities

Specifications	ΑΜΧ	FMX	
Energy range	5 – 18 keV	5 – 30 keV	
Wavelength range	0.7 – 2.5 Å	0.4 – 2.5 Å	
Flux at focus at 12.7 keV	>4×10 ¹² ph/s	3.5×10 ¹² ph/s	
Focal spot min (H×V)	7 × 5 μm ²	$1.5 \times 1 \mu m^2$	
Focal spot range	NA	1 – 20 µm	
Detector	Eiger 9M	Eiger 16M	

Fuchs, M. R. et al. "NSLS-II biomedical beamlines for micro-crystallography, FMX, and for highly automated crystallography, AMX: New opportunities for advanced data collection *AIP Conf. Proc. SRI2015*, **2016**, *1741*, 030006

AMX/FMX sample throughput

What can you do with a microbeam?

Inhouse test experiment: soak "large" crystal in ligand and collect data using the 7 micron beam at different "depth" (as perceived by ligand). Occupancy: in %

Hypothesis: not all ligands diffuse in crystals during soaking experiments

Assuming sufficient solubility and sufficient affinity.

Can we cluster related data sets based on small differences?

(Soares & Jakoncic, in prep)

Fast Rastering: absolute requirement

- 1 HDF5 data file per row
- LSDC server sends requests to dedicated nodes
- Convert from HDF5 to CBF
- Execute dials.find_spots_client (client/server)
- Count reflections and compute map.
- SSD buffer and GPFS cluster
- Limitations for very large rasters, 10 micron steps or less results in compute bottleneck
- Need more nodes
- Working to implement improved spot finder, (native HDF5 dozor using durinplugin.so)
- On 480 frame raster test data (single node)
 - dectris-neggia.so : ~4 seconds
 - durin-plugin.so : ~2.8 seconds
 - durin-plugin.so/parallel-ssh
 - > 3 nodes: ~1.5 seconds

Movie Recorded in 07/2018 20 ms exposure per frame ~30 frames/row, 0.6 seconds/row

Thanks Gleb and Sasha!

Fully Automated Data Collection

- Auto Raster & Auto Collect
 - loop centering (83 secs/sample)
 - crystal centering (163 sec / sample)
 - 40 samples per hour (loop center)
 - 22 samples per hour (crystal center)

Tons of Data

- Fast file system required
- Fast feedback required to achieve high throughout

Needs:

- Fast spotfinding
- More protocols (vector)
- Sorting / Strategy
- Witnessed user this week do 200 vector data sets manually at 4 min / structure

Leveraging existing codes:

• Xrec & C3D

Automated Data Processing

- Spot finder for rastering (*dials, dozor*)
- Data reduction (fast_dp_nsls-ii (XDS)) for all data collection with 5 degrees or more (+fast_dp_redo)
- Ligand binding using dimple_nsls-ii (modified for speed and parametrizable): MR + refine + coot map search
- Fast_ep / Fast_ep_weak / Fast_ep_nsls-ii : for SAD structure solution following fast_dp
- Fast_dp_pro (prune data), xmerge (merge and sort) are being tested

For serial crystallography: pipeline developed at FMX (Yuan Gao) and KAMO + pipeline developed by Qun Liu (Bio)

Our IT Infrastructure

Scalable Storage and Processing Nodes: sustaining growth

Fast_DP	1 NSLS-II node 44 cores	1 SOEIL node 144 cores	6 intel nodes 336 cores	5 NSLS-II nodes 220 cores	Time (s)	dimple	dimple-fast	dimple-faster
	2.1 GHz 2.5 GHz 2,1 GHz 2 +	2.1 GHz + 1 AMX WS : 6 cores OC @ 5	Standard node	52	22	18		
Time (s)	83	42	32	GHz 27	Optimized workstation	36	15	12

Optimizing computing hardware and softwares (inhouse improvements): 3x time speed up for data reduction and ligand binding studies. Github: https://github.com/nsls-ii-mx Share resources when not in use, e.g. slurm with VinaLC (computational drug screening)

Currently under development: augmented raster heat maps (in-line indexing)

- Borrow tools from XFEL for single frame indexing
- Efficient algorithms/code that allows for parallelization in distributed memory cluster
- Speed required for inline data-processing (spotfind/index 1000-5000 frames raster < 5 seconds)
- Tomograms for automated vector collection protocols (user this week did several hundred vectors by hand)

Future Upgrades / Needs

- Improved automation protocols
 - Error reporting/recovery not just data collection algorithms
- Parallel data processing pipelines (off-line)
- 1000 structures in a day project (~1.5/min)
- Combine spotfinding/indexing for raster centering

Currently: 2 independent beamlines with fast framing detectors

AMX: Dectris Eiger 9M @ > 200 Hz: 200-1500 MB/s FMX: Dectris Eiger 16 M @ > 100 Hz: 100-1500 MB/s Raster data collection

30 rasters for 1 dataset:

Shutter-open time 18s!

1 μm step raster scans with 1.3 to 5 ms exposure (~5 μm Proteinase K crystals) (Gao Y. et al, JSR 2018)

Multi layer monochromator with 1 % bandpass (~ 120 eV at 12.5 keV): 100x flux increase Associated with an upgraded fast framing next generation large area detector: ~ 10 MP @ 5000 Hz

From ~ 1 GBs to ~ 50 GBs

Long Term Goal @ AMX: 1000 crystals / day

- For very high throughput ligand binding studies of well characterized samples
 - fragment based screening
 - difficult target
 - Industrial proprietary research (pharma)
- For studying protein dynamics using: 1000's of partial or complete data sets
- We are working toward hardware and software deliverables toward that goal and collaborate with groups requiring both.

Acknowledgments

- John Lara
- Jean Jakoncic
- Dieter Schneider
- Stu Myers
- Tom Langdon
- Shirish Chodankar
- Bruno Seiva Martins
- Vivian Stojanoff
- John Skinner
- Hugo Slepicka
- Kun Qian
- Sean McSweeney
- Martin Fuchs
- Babak Andi
- Dale Kreitler

- Lin Yang
- Neil Whalen
- Dileep Bhogadi
- Rick Jackimowicz
- Lonny Berman
- Edwin Lazo
- Bob Sweet
- Alexei Soares
- Wuxian Shi
- Yuan Gao
- Jim Magill
- Nicolas Guichard
- Johnathan DiFabio
- Oksana Ivashkevych
- Herbert Bernstein
- Yusuke Yamada