
Requirements in Automatic Data Processing

C. Vonrhein, C. Flensburg & G. Bricogne Global Phasing Ltd.

Workshop on MX raw image data formats, metadata and validation 22nd August 2020

<u>Some topics of different autoPROC releases</u>: pixel problems, detector/image formats, indexing, reporting, automation (of course) etc.

Global Phasing Limited

- Over the last couple of years (decades?), at every user/developer meeting and workshop with data processing as a topic: "Let's talk/moan about image headers and formats ..."
- •d*TREK, fullCBF, imgCIF
- ADSC, marCCD, Bruker ...
- mini-cbf
- HDF5 and NeXus (NXmx) format
- Eiger detectors

A1. Simplified NXmx layout

A tree representation of this simplified NXmx layout is available at

http://hdrmx.medsbio.org/gold2/NXmx_Gold_Standard.jpg

```
<?xml version="1.0" encoding="UTF-8"?>
<definition name="NXmx" extends="NXobject" type="group"
    category="application"
    xmlns="http://definition.nexusformat.org/nxdl/3.1"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://definition.nexusformat.org/nxdl/3.1 ../nxdl.xsd"
    >
        <group:NXentrv>
            <field:title type="NX_CHAR" optional />
            <field:start_time type="NX_DATE_TIME" />
            <field:end_time type="NX_DATE_TIME" optional />
            <field:end_time_estimated type="NX_DATE_TIME" />
            <field:definition />
            <group:NXdata>
                <field:data type="NX_NUMBER" recommended />
            </group:NXdata>
            <group:NXsample>
                <field:name type="NX_CHAR" />
                <field:depends_on type="NX_CHAR" />
                <group:"NXtransformations" recommended />
                <field:"temperature" units="NX_TEMPERATURE" optional />
            </group:NXsample>
```

Let's talk about "image data content" ... much more interesting (?)

Eiger(2) data: 16-bit vs 32-bit

Tachnical Crasifica			
Technical Specifica	lions		
EIGER X 16M			
Detector Systems			
			EGEREX 16M
	6	Technical Specifications	
		EIGER2 X 16M	
		3.1. Specifications	
3.1. Specifications		3.1.1. Detector	
3.1.2. Detector			
Table 3.2: Technical Specifications		Table 3.1: Technical Specifications	
Image bit depth	16 bit or 32 bit	Image bit depth	32 bit
Readout bit depth	12 bit	Readout bit depth	16 bit
file	writer (HDF	F5) or stream interface	
uint16 or uint32		uint32	
065535 0429	94967295	0429496	67295
		is mostly want int32	
		36482147483647	
	217/700		

HDRMX workshop 20200822

Global Phasing Lto

- Eiger/Eiger2 data typically provided to applications via one of
 - Dectris/Neggia plugin
 - Diamond/Durin plugin
 - Conversion from HDF5 to minicbf:
 - H5ToXds (Dectris)
 - https://github.com/biochemfan/eiger2cbf
 - hdf2mini-cbf (GPhL)
 - writing from **Stream interface** into mini-cbf (application X?)

- Each application needs to handle
 - uint16 vs uint32 data
 - UINT16_MAX and UINT32_MAX markers:
 - unsigned int data doesn't provide negative markers
 - 0 is a valid pixel count
 - Eiger/Eiger2 firmware uses UINT{16,32}_MAX marker
 - conversion to int32 (signed 32bit integer)
- before actual processing data

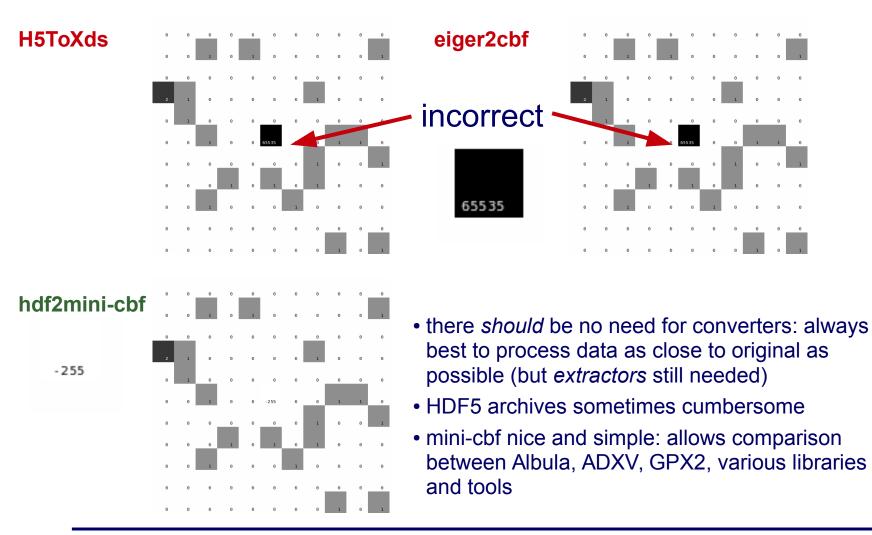
Caveat: this is our understanding and might not be a complete picture ... but we had lots of conversations with experts (Dectris, APS, Petra-III, DLS, XDS etc) that seem to confirm the gist this.

- <u>observation</u>: default autoPROC run on HDF5 data (using the Dectris/neggia plugin) gives a large number of very strong spots in COLSPOT
- convert HDF5 to mini-cbf
- looking at these images (using e.g. GPX2 or ADXV): there are no strong spots at all it seems. Odd!
- since raw data is stored (compressed) inside HDF5 container we need a reliable tool to convert this into a format we can visualise/inspect
- we provide
 - hdf2mini-cbf:
 - should support all kind of HDF5 files/formats out there
 - but needs constant checks and updates (because HDF5 files/formats can change regularly)
 - cbf2ijk: write ASCII version of x,y,value

DECTRIS®

PILATUS CBF Header Specification

Eiger data: 16-bit vs 32-bit


NUMBER OF STRONG PIXELS EXTRACTED FROM IMAGES	1509967	Dectris/Neggia (autoPROC)
NUMBER OF DIFFRACTION SPOTS LOCATED	66279	
IGNORED BECAUSE OF SPOT CLOSE TO UNTRUSTED REGION	3431	
WEAK SPOTS OMITTED	23352	
NUMBER OF DIFFRACTION SPOTS ACCEPTED	39496	

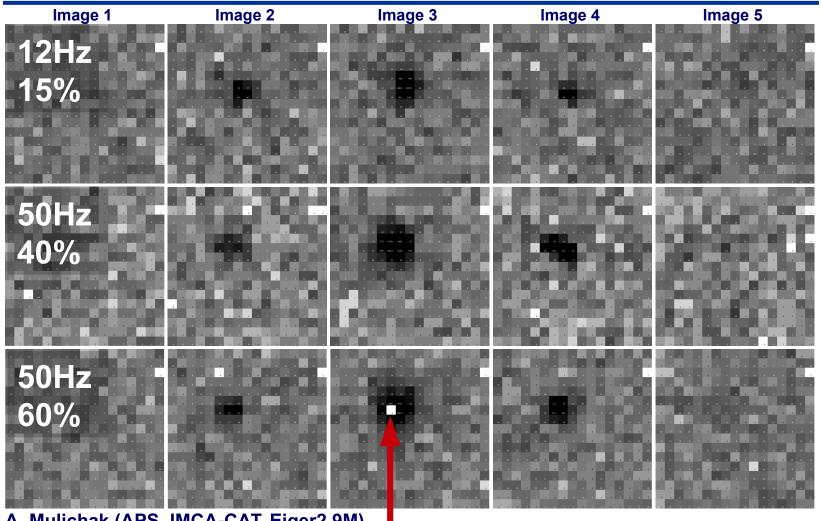
NUMBER OF STRONG PIXELS EXTRACTED FROM IMAGES	1509967	Dectris/Neggia (XDSme)
NUMBER OF DIFFRACTION SPOTS LOCATED	66279	
IGNORED BECAUSE OF SPOT CLOSE TO UNTRUSTED REGION	3431	
WEAK SPOTS OMITTED	23352	
NUMBER OF DIFFRACTION SPOTS ACCEPTED	39496	

		-
NUMBER OF STRONG PIXELS EXTRACTED FROM IMAGES	1540328	DLS/Durin (autoPROC)
NUMBER OF DIFFRACTION SPOTS LOCATED	67110	
IGNORED BECAUSE OF SPOT CLOSE TO UNTRUSTED REGION	3510	
WEAK SPOTS OMITTED	10068	
NUMBER OF DIFFRACTION SPOTS ACCEPTED	53532	

NUMBER OF STRONG PIXELS EXTRACTED FROM IMAGES	1540328	hdf2mini-cbf
NUMBER OF DIFFRACTION SPOTS LOCATED	67110	
IGNORED BECAUSE OF SPOT CLOSE TO UNTRUSTED REGION	3510	
WEAK SPOTS OMITTED	10068	
NUMBER OF DIFFRACTION SPOTS ACCEPTED	53532	

$HDF5 \rightarrow mini\text{-}cbf$: know your converter

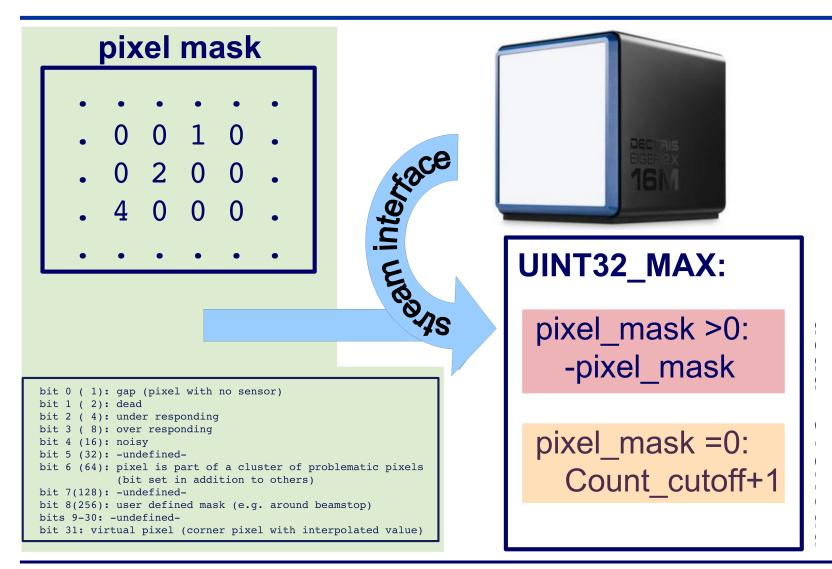
Global Phasing Limited



- Selection of a more robust low-intensity cut-off for accepting weak spots in the COLSPOT step. This mitigates the influence of "hot" detector pixels on indexing (reported by Clemens Vonrhein and colleagues at Global Phasing Ltd.)
- Moving from cut-off based on mean (can be influenced by outliers, i.e. hot and too strong pixels) to median-based criteria
- Obviously still better to exclude hot/damaged/flickering pixels from entering (XDS) computations in the first place.
- Exclusion/marking of pixels needs to be done correctly: what "marker" to use?

HDRMX workshop 20200822

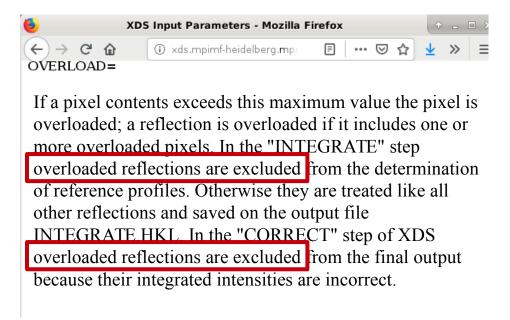
UINT32_MAX: hidden "treasures"

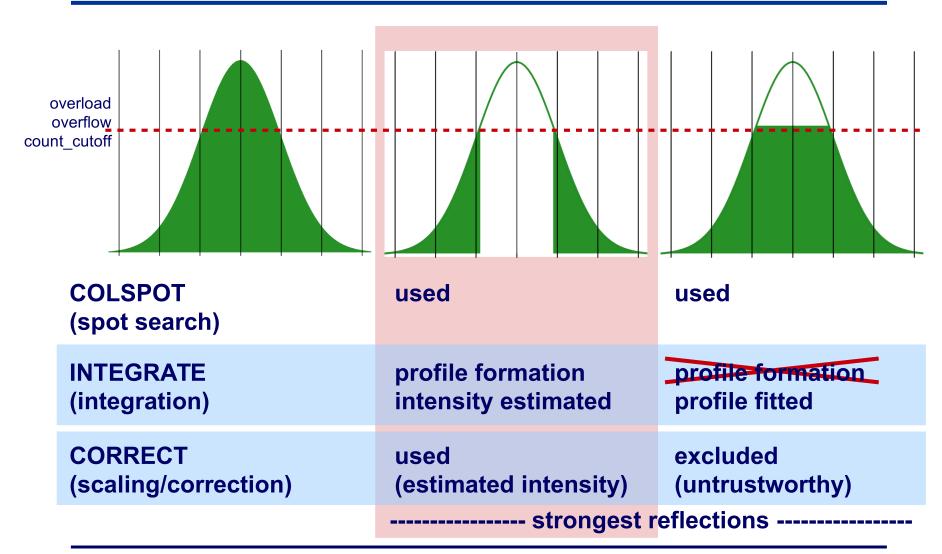

A. Mulichak (APS, IMCA-CAT, Eiger2 9M)

wrongly marked by "-1" (stream interface converter to mini-cbf)

Eiger: stream to mini-cbf conversion

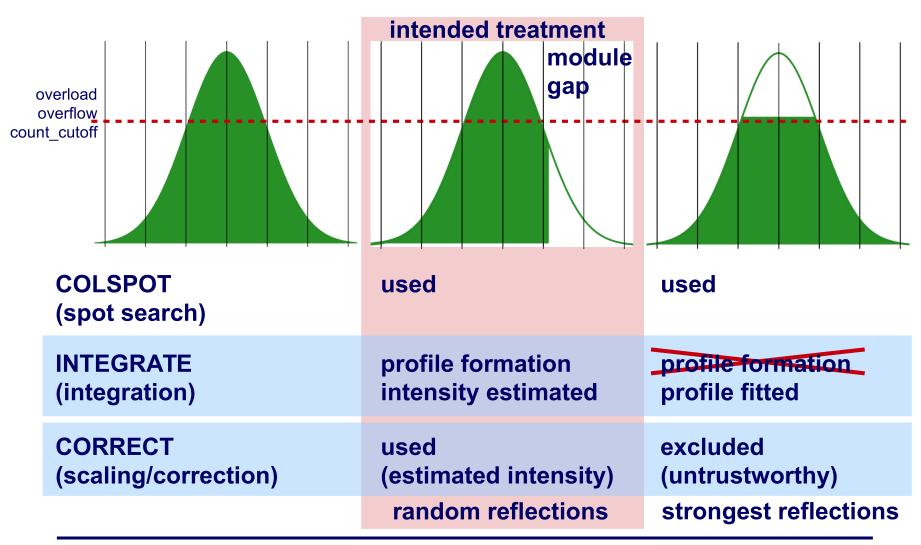
HDRMX workshop 20200822


Global Phasing Ltd


XDS: overloaded vs dead pixels

🤞 🗴	DS Input Parameters - Mozilla F	irefox	+ - • >
(← → ሮ @	() xds.mpimf-heidelberg.mp	♡☆	<u>↓</u> ≫ ≡
MINPK=			
Defines the mini	mum required percentage	of observed refle	ction
intensity. The m	issing intensity is estimated	from the learned	d profiles.
If less than MIN	PK % is observed, the refle	ection will be dis	carded.
Example: MINI	PK=75.0		

The default value of 75% works fine and hardly needs to be changed.


XDS: differences depending on marking

Global Phasing Limited

XDS: differences

HDRMX workshop 20200822

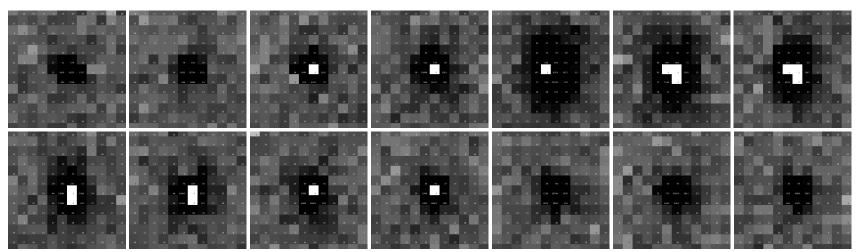
Global Phasing Ltd

aP_fixcbf: for Eiger(2) data as mini-cbf

5V01 WARNING : a total of 77274 pixels have been reset in 515 5V01 out of 1440 images. This corresponds to an average 5V01 of 54 pixels for all images (or 150 pixels in all 5V01 affected images).	APS, 21-ID-D
6MOL WARNING : a total of 13644 pixels have been reset in 303 6MOL out of 1800 images. This corresponds to an average 6MOL of 7.6 pixels for all images (or 45 pixels in all 6MOL affected images).	APS, 23-ID-B
6NRQ WARNING : a total of 7835 pixels have been reset in 151 out 6NRQ of 925 images. This corresponds to an average of 6NRQ 8.5 pixels for all images (or 52 pixels in all 6NRQ affected images).	APS, 23-ID-B
6UKG WARNING : a total of 4724 pixels have been reset in 1599 6UKG out of 1600 images. This corresponds to an average 6UKG of 3.0 pixels for all images (or 3.0 pixels in all 6UKG affected images).	APS, 22-ID
6DHW WARNING : a total of 4566 pixels have been reset in 94 out 6DHW of 360 images. This corresponds to an average of 6DHW 13 pixels for all images (or 49 pixels in all 6DHW affected images).	APS, 21-ID-D

GDL Global Phasing Limited

6UKG (~3 pixels/image reset)


data as-is	Overall	InnerShell	OuterShell
Low resolution limit	57.989	57.989	1.144
High resolution limit	1.083	3.139	1.083
Rmerge (all I+ & I-)	0.082	0.073	0.828
Rmeas (all I+ & I-)	0.088	0.079	0.943
Rpim (all I+ & I-)	0.033	0.029	0.444
Total number of observations		37463	23422
Total number unique	107912	5395	5397
Mean(I)/sd(I)	12.0	23.6	1.6
Completeness (spherical)	84.2	99.0	27.7
Completeness (ellipsoidal) Multiplicity	88.9 6.9	99.0 6.9	36.9 4.3
CC(1/2)	0.996	0.992	4.3
CC(1/2)	0.550	0.552	0.011
after aP_fixcbf	Overall	InnerShell	OuterShell
after aP_fixcbf	Overall 57.989	InnerShell 57.989	
		57.989	1.144
Low resolution limit	57.989	57.989	1.144
Low resolution limit	57.989	57.989	1.144
Low resolution limit High resolution limit	57.989 1.083	57.989 3.133	1.144 1.083
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-)	57.989 1.083 0.080	57.989 3.133 0.070	1.144 1.083 0.828
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations	57.989 1.083 0.080 0.087 0.032 747774	57.989 3.133 0.070 0.076 0.028 37398	1.144 1.083 0.828 0.943 0.444 23398
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations Total number unique	57.989 1.083 0.080 0.087 0.032 747774 107884	57.989 3.133 0.070 0.076 0.028 37398 5393	1.144 1.083 0.828 0.943 0.444 23398 5395
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations Total number unique Mean(I)/sd(I)	57.989 1.083 0.080 0.087 0.032 747774 107884 12.0	57.989 3.133 0.070 0.076 0.028 37398 5393 23.8	1.144 1.083 0.828 0.943 0.444 23398 5395 1.6
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations Total number unique Mean(I)/sd(I) Completeness (spherical)	57.989 1.083 0.080 0.087 0.032 747774 107884 12.0 84.1	57.989 3.133 0.070 0.076 0.028 37398 5393 23.8 98.4	$ \begin{array}{r} 1.144\\ 1.083\\ 0.828\\ 0.943\\ 0.444\\ 23398\\ 5395\\ 1.6\\ 27.7\\ \end{array} $
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations Total number unique Mean(I)/sd(I) Completeness (spherical) Completeness (ellipsoidal)	57.989 1.083 0.080 0.087 0.032 747774 107884 12.0 84.1 88.9	57.989 3.133 0.070 0.076 0.028 37398 5393 23.8 98.4 98.4	$ \begin{array}{r} 1.144\\ 1.083\\ 0.828\\ 0.943\\ 0.444\\ 23398\\ 5395\\ 1.6\\ 27.7\\ 36.9\\ \end{array} $
Low resolution limit High resolution limit Rmerge (all I+ & I-) Rmeas (all I+ & I-) Rpim (all I+ & I-) Total number of observations Total number unique Mean(I)/sd(I) Completeness (spherical)	57.989 1.083 0.080 0.087 0.032 747774 107884 12.0 84.1	57.989 3.133 0.070 0.076 0.028 37398 5393 23.8 98.4	$ \begin{array}{r} 1.144\\ 1.083\\ 0.828\\ 0.943\\ 0.444\\ 23398\\ 5395\\ 1.6\\ 27.7\\ \end{array} $

Only small differences in overal scaling/merging statistics after fixing diffraction data.

But ...

UINT32_MAX: hidden "treasures"

Global Phasing Limited

G. Bourenkov (Petra-III)

- aP_fixcbf is more an analysis tool and <u>not</u> intended as an integral part of a "production" pipeline
- there will be marginal differences in scaling/merging statistics
- main point: overloaded pixels/reflections become invisible (important information to decide on potential adjustment of collection strategy, detector settings, speed, flux etc.)

WARNING

1191 overloaded reflections out of 769541 total - which is rather unexpected for an EIGER detector (we would expect data collected with low dose and high multiplicity). There could be good reasons for this, but you might want to check (e.g. with the beamline staff) if (1) the pixel mask is set/applied correctly, (2) some damaged ("hot", "flickering" or "dead") pixels are not yet masked, (3) the transmission was larger than necessary or (4) the data collection speed was too fast. There could be other reasons as well ... the main point is that this doesn't look good and needs investigating.

6UKG: WARNING from autoPROC (summary.html)

- Will we still be talking about meta-data formats in 2021?
- Hopefully we'll be talking "only" about pixel data content by then.
- Interactions with beamlines and external developers important (e.g. via HDRMX, MXCuBE, ISPyB)!
- Interaction with power users crucial for feedback, real-life testing and planning (EMBL/CRIMS, GPhL consortium members etc)!
- More automation (autoPROC) expected especially in decision making about poor image ranges.

Thanks to <u>a lot</u> of people: lots of Consortium members, beamline and synchrotron staff, developers & GPhL colleagues

H. Bernstein, T. Bertrand, G. Bey, M. Blaesse, G. Bourenkov, G. Bunkoczi, R. Byrne, I. Cornaciu, J. Dias, K. Diederichs, P. Evans, G. Fischer, T. Fischmann, M. Haffke, S. Harris, W. Kabsch, J. Key, E. Krissinel, J. Kopec, I. Korndoerfer, M. Kroemer, A. Kuglstatter, A. Lammens, P. Legrand, M. Lehmann, S. Liu, D. Logan, K. Longenecker, J. Marquez, M. Mathieu, P. McEwan, L. Miallau, A. Mulichak, J. Murray, D. Musil, R. Nolte, M. Rappas, J. Read, D. Reinert, P. Rowland, P. Rucktooa, M. Rudolph, J. Sack, M. Savko, C. Schleberger, H. Schreuder, S. Sheriff, O. Svensson, M. Swan, E. TerHaar, J. Thorpe, Y. Wang, D. Waterman, T. Weinert, M. Weiss, G. Winter, J. Wojdyla, D. Zeyer ... many more