

HDR DETECTORS and CHEMICAL CRYSTALLOGRAPHY at the AUSTRALIAN SYNCHRORTON MX BEAMLINES

Dr Jason Price

ANSTO - Melbourne Beamline Scientist, MX1 and MX2 Beamlines

cience. Ingenuity. Sustainabilit

CX and PX Journal Publications

Papers MX1 and MX2 cater to both 107 CX PX

ANSTO

the CX and PX communities 1693 publications 596 papers from CX

1097 paper from PX

~ 35% of publications are from CX community

Resolution CX vs. PX

Detector type preferred by CX

Different requirements from Structural biology Smaller unit cells give, more cells for a crystal volume.

- Stronger signal
- Radiation damage fewer defects for total diffraction of crystal

https://www.rigaku.com/products/smc/synergys?index=1

O

A broad CX user ba

Diversity of sample and experiment types in CX

Research Areas

Supramolecular assemblies of light elements. MOFS – Metal Organic Frameworks (Coordination polymers) Minerals Inorganic Materials Supramolecular Chemistry Spin cross over phase transitions Actinides Structure Determination for Magnetic

properties

(Lanthanide SMM) SCXRD – overlap with PD Solid State Photochemistry High pressure cells Absolute Structure Determination

Two Single Crystal X-ray Diffraction Beamlines

<u>MX1:</u>

- Energy range: 8 keV 17.5 keV
- Beam focus size at sample: 180 μm x 160 μm (HxV)
- Flux at the sample: 3.6 e10¹¹ ph/s @ 13 keV
- Mini kappa geometry available
- <u>Dectris Éiger 2 9M détector</u>

<u>MX2:</u>

- Energy range: 8.5 keV 17.5 keV
- Beam focus size at sample: 22 μm x 13 μm (HxV)
- Positional and intensity stability: 1 µm position stability
- Flux at the sample: 1.2 e10¹² ph/s @ 13 keV
- Micro collimator (7.5, 10, 20 μm)
- <u>Dectris Eiger 16M detector (ACRF and user community funded)</u>

Both MX1 and MX2:

- Robotic loading of samples
- Remote collection available

Implementation Challenges

- Angle of Incidence correction (CCD)
- Unfamiliar Detectors
- Unfamiliar Software
- Data reprosseing
- Beam Center
- Fall off at high angle
- Different intensities at same resolution
- Count Rate Correction
 Very low mosaic spread

Ali Chahine – Monash Chemistry First new CX structure collected on Eiger 2 9M at MX1, 18/06/2019

Count rate and CX

CX has more issues with count rate

- What is the best attenuation.
- A few overloads On a CCD is not so bad.
- On Hybrid Photon Counting (HPC) indicates well above count rate.

Count rate and CX – Intensity Differences

How bad could it really be? Modulation in Bi₂₃CrNb₃O₄₅ Prof. Chris Ling, Chemistry, The University of Sydney

Element	Percent by Weight
0	12.29%
Cr	0.89%
Nb	4.76%
Bi	82.06%

Space group	Fm-3m	F-43m
a, b, c (Å)	~5.5	~16.57
V (ų)	1426.87(7)	5707.7(3)

Bendable crystals

- Crystals of copper(II) acetylacetonate
- Repeatably, reversibly bent
- Full data collection on MX1
- Mapping studies on MX2 using the 7.5 micron micro collimator

Worthy et al. 2018. Nature Chemistry 10 (1), 65-69

Structural Changes Across a Bent Crystal Using MX2 Micro-Focused Synchrotron Radiation

But this study was done by manually moving the beam and refining each structure individually

Worthy, A.; Grosjean, A.; Pfrunder, M. C.; Xu, Y.; Yan, C.; Edwards, G.; Clegg, J. K.; McMurtrie, J. C., Nat Chem 2018, 10 (1), 65-69.

1 Second Data Collection the MX1 Dectris Eiger 2, 9M

Sample	[Ru(II)(2,2'-bipyridine) ₃](PF ₆) ₂
Crystal System	Trigonal
Space Group	P-3c1
Strategy	<u>180° sweep, 1 sec, 180 Hz</u>
a, b (Å)	10.6825 (10)
c (Å)	16.356 (3)
V (ų)	1616.4 (6)
Crystal Size (mm)	0.040 x 0.030 x 0.025
Attenuation	0%
Wavelength(Å) / Energy (keV)	0.71073 / 17.444
Temperature	220 (2) K
Data completeness	0.996
θ (max) °	25.982
R ₁ (reflections)	0.0303 (918)
wR ₂ (reflections)	0.0850 (1056)
Bond Precision C – C (Å)	0.0040

Investigation of an abrupt phase transition

Uses all of the tools developed.

- Monoclinic system
- Temperature ramp
 - Ramp temperature and trigger data collection at temperature.
- Heat 5K for every minute
- Collect every 2 mins (10K), 32 full data collections in 60 minutes

ANSTO

240° sweep, 12 s, 200Hz

Alexander Angeloski, et. al., UTS

FAIR and FACT, compliance issues

CIF key terms	CIF key values		2 QEGui Eiger_collect_tab _ c 3		
_cell_measurement_temperature _cell_measurement_reflns_used _cell_measurement_theta_min _cell_measurement_theta_max	"Temperature from device" "Value from IDXREF.LP" "Value calculated from IDXREF.LP and SPOT.XDS" "Value calculated from IDXREF.LP and SPOT.XDS"		File Edit Tools Options Help Windows Rastering tab Screening tab Collection tab Strategy information Staff Dataset Param Read Back Set Point Input Attenuation 0 0 0 0	Robot pin on Goni? Detector state: Idle Acquire status: Done Detector Armed Acquire Message: Ready Tout Pont Market	
_exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid _exptl_crystal_size_min	User input auto-populated from collecti in GUI. Or "user input"	Crystal Description Colour Orange	File prefix test test Folder /d/58/ /d/58/ Total Exposure (s) 18.0 18.0 Start Angle 105.1 Deg -75.0 -75.0 Wedge (deg) 180.0 180.0 180.0 Distance 799.97 mm 109.00 109.00 Frequency (Hz) 0.0000 0.0000	Autocenter sample Recover Hung GUI Crystal Description Colour Orange Shape plate Size (um) Minimum 10 Middle 80 Beamline Robot status: Busy DCM status Completed	
_exptl_absorpt_correction_type _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max	"Multi-Scan" (true for XDS and sadabs "Value not reported by XDS" or "will be present in autoprocess_sadab "Value not reported by XDS" or "will be present in autoprocess_sadab "XDS (Kabsch, 2010)" or	Shape plate Size (um) Minimum 10	Dataset Stop Reset values Detector msg: Most recent data: /data/ 16477a/trames/riboldia/d/sB/10-riJu_2020_3_2_006 Robot Drying Cycle C	Adximum [100] Reset values Robot location: 0 Robot at home: Yes Energy: Beamstop in position © Collection, server © Robot © Fast Shutter © Madscan © Autocenter © L'urrent Level: User t Down (seconds)	
_exptl_absorpt_process_details _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source	"sadabs (Bruker, 2001)" "Temperature from device" "Wavelength from beamline" "Synchrotron" "MX1 Beamline Australian Synchrotro "MX2 Beamline Australian Synchrotro	Middle 80 Maximum 100 Reset values	For the NX sample by values are not includ	ase_class, these ed.	
_diffrn_measurement_device_type _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _computing_data_collection _computing_cell_refinement _computing_data_reduction	"MX1 (ref)" or "MX2 (ref)" "Silicon Double Crystal" "Dectris Eiger2 9M" or "Dectris Eiger 16 "Omega Scan" 13.3 (Dectris Eiger detectors) 'AS QEGUI' 'XDS (Kabsch, 2010)' 'XDS (Kabsch, 2010)'	M"	<pre>_exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid _exptl_crystal_size_min</pre>	prism colourless 0.32 0.27 0.10 ANSTO	

Acknowledgements

The Australian Synchrotron MX Team MX 1 & 2 Team-leaders Alan Riboldi-Tunnicliffe (Structural Biology)

Rachel Williamson (Chemical Crystallography)

MX3 design

Tom Caradoc-Davies – Seconded to Lead MX3 Design and Build

MX Team

Jun Aishima (PX Computing Post-Doc) -> NSLS II USA David Aragao (Structural Biology) -> DLS IO4 UK Stephanie Boer (Chemical Crystallography) Eleanor Campbell (Structural Biology) Nathan Cowieson (Structural Biology) -> DLS BioSAXS UK Daniel Eriksson (Structural Biology) -> MX3 (September) Stephen Harrop (Structural Biology) Christine Gee (Structural Biology) -> Berkley USA Santosh Panjikar (Structural Biology) Jason Price (Chemical Crystallography) Kate Smith (Structural Biology) -> PSI CH

