
Eiger benchmark with 
DIALS

HDRMX



The Problem

● Current detectors (DECTRIS Pilatus) run at up to 100 frames / s
● Next generation Eiger detectors run up to 750 frames / s (for 4M)
● This rate will probably not be routinely used for data collection
● This rate will be used for raster scanning i.e. to allow a large loop to be 

sampled with a fine beam in a short time (e.g. X-ray centering)
● For raster scanning the experiment has to wait for the results so this is time 

critical
● Therefore in first instance principle benchmarking problem is spot finding



raw data



mean



variance



variance / mean



variance / mean > 1 + sigma_s * sqrt(2/(m-1))



raw data > mean + sigma_b * sqrt(variance)



$ dials.image_viewer datablock.json strong.pickle



Optimizations for grid scans

● Reduce overhead - do not keep pixels since data are 2D (for raster scans) 
and we only want #spots etc

● Divide up data set into uniform large chunks - reduce overhead in launching 
tasks

● Here only considering single node performance i.e. given grid scan, how long 
does processing take



Benchmark data

● Data provided by Martin Savko 
@ Soleil

● Eiger 9M grid scan, 750 points 
(30x25, 10ᶞm pitch) HDF5 
format, collected from 
Transthyretin sample



Benchmarking systems

● System 0 @ DLS (standard cluster node)
20 core (2 x 10 core “Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz” + 
128GB RAM) no HT

● System 1 @ ALS BL831 (James Holton)
72 core (4 x 18 core “Intel(R) Xeon(R) CPU E7-8870 v3 @ 2.10GHz” + 
1024GB RAM) with HT so 144 max threads

● System 2 @ CCI (viper.lbl.gov) 
32 core (4 x 8 core “AMD Opteron(tm) Processor 6284 SE” + 256GB RAM) 
with HT equivalent so max 64 threads



Benchmark

Performed with dials 1.3.1 linux binaries (same binary set for all systems)

dials.find_spots datablock.json nproc=${nproc} shoebox=false

Principle consideration wall clock time i.e. from starting process to results 
becoming available

Here nproc=4…# in system

Data come from RAMDISK => file system performance not a consideration

NUMA structure could be a consideration



Results 1: #cores - wall clock



Results 1: #cores - rate / “efficiency”



Benchmark 2: #frames (10 cores on system 0)



Second test: Pilatus 6M data

● 1209 image grid scan recorded as part of ongoing development work at 
Diamond Light Source I04

● Run processing on system 0 to make sure there are not artefacts relating to 
HDF5 in the analysis behaviour

● Extend #threads beyond #cores to see if I/O waiting is a problem



#2 wall clock



#2 “efficiency”



#2 comments

● Overloading the system does not appear to be helpful i.e. #threads > #cores 
(for our system) though penalty is also not substantial

● Overall behaviour very similar => HDF5 structure is not really a problem
● For Pilatus 2 current performance of one 20 core node adequate (collection 

takes minimum of 50s, analysis 30s)



Conclusions

● “Efficiency” drops off rather quickly with increasing #cores [1]
● Wall clock time flattens off - around 40 s for system 0 using 20 cores; ~ 30 s 

for system 1 using 144 cores
● YMMV: I strongly recommend testing systems
● For small #frames start up time (~ 4s) dominates
● For large #frames wall clock time ~ linear 0.08 s / frame (10 cores)
● We maybe need to put some effort into optimizing DIALS for many core 

architectures (e.g. system 1 above; Xeon phi; …)
● Using small #cores but analysing each row of a grid scan on a separate node 

in a round-robin manner may be optimum for responsiveness

[1] this was a known thing at DLS for other tasks e.g. XDS hence our cluster 
systems having 2 sockets x 10 core Xeon


