Eiger benchmark with
DIALS

HDRMX

The Problem

Current detectors (DECTRIS Pilatus) run at up to 100 frames / s

Next generation Eiger detectors run up to 750 frames / s (for 4M)

This rate will probably not be routinely used for data collection

This rate will be used for raster scanning i.e. to allow a large loop to be
sampled with a fine beam in a short time (e.g. X-ray centering)

For raster scanning the experiment has to wait for the results so this is time
critical

Therefore in first instance principle benchmarking problem is spot finding

raw data

mean

variance

variance / mean

| vafiance_/_m'ear:'].'_>_._1.-_4r;sig_rna__é « $qrt(2/(m-1))

raw data > mean + sigma_b* sQrt(vafiance)

$ dials.image viewer datablock.json strong.pickle ‘

Optimizations for grid scans

e Reduce overhead - do not keep pixels since data are 2D (for raster scans)

and we only want #spots etc
e Divide up data set into uniform large chunks - reduce overhead in launching

tasks
e Here only considering single node performance i.e. given grid scan, how long

does processing take

Benchmark data

Data provided by Martin Savko
@ Soleil

Eiger 9M grid scan, 750 points
(30x25, 10um pitch) HDF5
format, collected from
Transthyretin sample

Benchmarking systems

e System 0 @ DLS (standard cluster node)
20 core (2 x 10 core “Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz" +
128GB RAM) no HT

e System 1 @ ALS BL831 (James Holton)
72 core (4 x 18 core “Intel(R) Xeon(R) CPU E7-8870 v3 @ 2.10GHZ" +
1024GB RAM) with HT so 144 max threads

e System 2 @ CCI (viper.lbl.gov)
32 core (4 x 8 core “AMD Opteron(tm) Processor 6284 SE” + 256GB RAM)
with HT equivalent so max 64 threads

Benchmark

Performed with dials 1.3.1 linux binaries (same binary set for all systems)

dials.find spots datablock.json nproc=${nproc} shoebox=false

Principle consideration wall clock time i.e. from starting process to results
becoming available

Here nproc=4...# in system
Data come from RAMDISK => file system performance not a consideration

NUMA structure could be a consideration

Results 1: #cores - wall clock

Results 1: #cores - rate / “efficiency”

Benchmark 2: #frames (10 cores on system 0)

Second test: Pilatus 6M data

e 1209 image grid scan recorded as part of ongoing development work at

Diamond Light Source 104
e Run processing on system 0 to make sure there are not artefacts relating to

HDF5 in the analysis behaviour
e Extend #threads beyond #cores to see if I/O waiting is a problem

#2 wall clock

Pilabus &M gnd scan, 1209 frames

#2 “efficiency”

Pilabus &M gnd scan, 1209 frames

Fi
&
E
]
w
o
[

#2 comments

e Overloading the system does not appear to be helpful i.e. #threads > #cores
(for our system) though penalty is also not substantial

e Overall behaviour very similar => HDF5 structure is not really a problem

e For Pilatus 2 current performance of one 20 core node adequate (collection
takes minimum of 50s, analysis 30s)

Conclusions

e ‘“Efficiency” drops off rather quickly with increasing #cores [1]

Wall clock time flattens off - around 40 s for system 0 using 20 cores; ~ 30 s

for system 1 using 144 cores

YMMV: | strongly recommend testing systems

For small #frames start up time (~ 4s) dominates

For large #frames wall clock time ~ linear 0.08 s / frame (10 cores)

We maybe need to put some effort into optimizing DIALS for many core

architectures (e.g. system 1 above; Xeon phi; ...)

e Using small #cores but analysing each row of a grid scan on a separate node
in a round-robin manner may be optimum for responsiveness

[1] this was a known thing at DLS for other tasks e.g. XDS hence our cluster
systems having 2 sockets x 10 core Xeon

