Eiger benchmark with
DIALS

HDRMX



The Problem

Current detectors (DECTRIS Pilatus) run at up to 100 frames / s

Next generation Eiger detectors run up to 750 frames / s (for 4M)

This rate will probably not be routinely used for data collection

This rate will be used for raster scanning i.e. to allow a large loop to be
sampled with a fine beam in a short time (e.g. X-ray centering)

For raster scanning the experiment has to wait for the results so this is time
critical

Therefore in first instance principle benchmarking problem is spot finding
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raw data > mean + sigma_b* sQrt(vafiance)



$ dials.image viewer datablock.json strong.pickle ‘



Optimizations for grid scans

e Reduce overhead - do not keep pixels since data are 2D (for raster scans)

and we only want #spots etc
e Divide up data set into uniform large chunks - reduce overhead in launching

tasks
e Here only considering single node performance i.e. given grid scan, how long

does processing take



Benchmark data

Data provided by Martin Savko
@ Soleil

Eiger 9M grid scan, 750 points
(30x25, 10um pitch) HDF5
format, collected from
Transthyretin sample




Benchmarking systems

e System 0 @ DLS (standard cluster node)
20 core (2 x 10 core “Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz" +
128GB RAM) no HT

e System 1 @ ALS BL831 (James Holton)
72 core (4 x 18 core “Intel(R) Xeon(R) CPU E7-8870 v3 @ 2.10GHZ" +
1024GB RAM) with HT so 144 max threads

e System 2 @ CCI (viper.lbl.gov)
32 core (4 x 8 core “AMD Opteron(tm) Processor 6284 SE” + 256GB RAM)
with HT equivalent so max 64 threads



Benchmark

Performed with dials 1.3.1 linux binaries (same binary set for all systems)

dials.find spots datablock.json nproc=${nproc} shoebox=false

Principle consideration wall clock time i.e. from starting process to results
becoming available

Here nproc=4...# in system
Data come from RAMDISK => file system performance not a consideration

NUMA structure could be a consideration



Results 1: #cores - wall clock




Results 1: #cores - rate / “efficiency”




Benchmark 2: #frames (10 cores on system 0)




Second test: Pilatus 6M data

e 1209 image grid scan recorded as part of ongoing development work at

Diamond Light Source 104
e Run processing on system 0 to make sure there are not artefacts relating to

HDF5 in the analysis behaviour
e Extend #threads beyond #cores to see if I/O waiting is a problem



#2 wall clock

Pilabus &M gnd scan, 1209 frames




#2 “efficiency”

Pilabus &M gnd scan, 1209 frames
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#2 comments

e Overloading the system does not appear to be helpful i.e. #threads > #cores
(for our system) though penalty is also not substantial

e Overall behaviour very similar => HDF5 structure is not really a problem

e For Pilatus 2 current performance of one 20 core node adequate (collection
takes minimum of 50s, analysis 30s)



Conclusions

e ‘“Efficiency” drops off rather quickly with increasing #cores [1]

Wall clock time flattens off - around 40 s for system 0 using 20 cores; ~ 30 s

for system 1 using 144 cores

YMMV: | strongly recommend testing systems

For small #frames start up time (~ 4s) dominates

For large #frames wall clock time ~ linear 0.08 s / frame (10 cores)

We maybe need to put some effort into optimizing DIALS for many core

architectures (e.g. system 1 above; Xeon phi; ...)

e Using small #cores but analysing each row of a grid scan on a separate node
in a round-robin manner may be optimum for responsiveness

[1] this was a known thing at DLS for other tasks e.g. XDS hence our cluster
systems having 2 sockets x 10 core Xeon



