
Dealing with Data 
Rates

HDRMX November 2019



Raster Scan



Raster Scans

• First use case VMXi - not 
interactive so analysis can 
happen whenever


• Grid scans of ~ 5-20 thousand 
frames typical


• Initial implementation - use 
one node to grind through the 
HDF5 representation after 
acquisition



Raster Scans

• Interactive use analysis after 
acquisition is not acceptable - 
far too much latency


• Processing was limited to 
single node


• Alternative - the hack that 
shall not be named



The Hack
Header

ZeroMQ stream

ODIN

Stream Dumper

HDF5

Dumped 0MQ Packets

Analysis (cluster)



Hack Details
• Header + image packets written to ${VISIT}/tmp/${DCID}


• Extend DIALS to read these natively 


• Use CBF equivalent analysis


• Benefits - analysis from the stream while collecting, 
parallel processing, end user experience far improved, file 
system builds in elasticity


• Costs - 50% load increase on DAQ system, 2 x write load 
on file system, >>>> inodes



Rotation Processing



Data Rates

• Issues used to be inodes / s & MB / s


• Bigger issue now Gpixel / s - if measured carefully the 
data compress very well


• Even typical data get compression much better than CBF 
byte offset (limited to 1 byte / pixel)



Data Volumes

• Typical data set - around 2 - 4 
MB / frame - so 1 - 2 bits / 
pixel


• 3,600 @ 0.1° around 15 GB


• Pilatus 6M CBF around 20 GB 
for same


• 6 inodes not 3,600 🙂


• GPFS very happy



Data Volumes

• Sparse data set - < 1 MB / 
frame - so << 1 bit / pixel


• 28,800 @ 0.05° around 20 GB


• Pilatus 6M CBF around 170 
GB for same


• GPFS very happy


• Processing very unhappy!



Processing Challenges

• For radiation sensitive samples with a photon counting 
detector high multiplicity / low dose rational strategy


• With detector capable of 50° / s @ 0.1° literally nothing 
preventing this strategy - 4 turn data set takes < 30s


• Any radiation damage spread across reciprocal space


• Data volume modest - comparable to 1 turn data set with 
4 x transmission as compression close to entropy limit



Processing Challenges
• Spot finding / integration time proportional to no. pixels


• Scaling time proportional to no. reflections measured


• Eiger 16M ~ 2.7 x as many pixels


• Rational strategy 4 x as many frames, 4 x as many 
reflections


• Spot finding / integration 10 x as expensive, scaling 4 x 
as expensive at least



Responses to Date

• In DIALS - speed week - identify the bottlenecks and try 
to resolve them - MTZ output was a major one - writing 
batch headers ~ O(n^3) process?! also trim no. reflections 
used for symmetry analysis etc.


• Spot finding / integration - memory bandwidth limited? 
Can scale across machines e.g. fast_dp


• Scaling minimisation problem - serial-ish - want fast 
CPU’s (GHz) therefore lower core counts



Kaizen
Continuous Improvement



No “Quick Wins”
• Already the DIALS / XDS etc. reasonably efficient


• Finding cases where the code is O(n^2) etc. key - try to 
reduce this


• Tuning hardware can help - some % 


• Real benefits will come only from large number of small 
improvements - hence Kaizen approach


• Trying to “keep up” though - this will require massive 
investment


