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PREFACE 
 

 In the past four years, several independent workshops organized by the European Bioinformatics Institute 
(EBI) and the Research Collaboratory for Structural Bioinformatics (RCSB) at Rutgers University, have reached 
a community consensus that it is time to establish publicly supported, one-stop deposition and retrieval facilities 
for cryoEM density maps, atomic models and associated metadata.  

 
 In an idealized repository, cryoEM experts and biological end-users would build from what the previous 
researchers have contributed, forming the basis for subsequent hypothesis-driven research and knowledge 
discovery.  Derivative data from such discoveries could also be deposited into the repository. 
 
 What is initially envisioned is an integrated file of 2D or 3D spatial image datasets along with relevant 
acquisition and reconstruction metadata; but other optional metadata, such as animations that temporally 
illustrate the spatial datasets or ISO standardized xml-based MPEG7 that concisely annotates images, could also 
enhance the understanding of the spatial image datasets and together dramatically improve their access.  For 
example, with an integrated archive-ready 200 GB data file that contains 1) a large 3D cryo-electron tomogram 
of a biological structure, 2) with sub-sampled, hierarchically organized, compressed, chunked 3D tomograms, 
and also including 3) various animations and 4) MPEG7 meta-datasets; users could efficiently examine the 
animations through a simple web browser to get a first look before directly interacting with the 3D spatial image 
datasets. By defining a region of interest in the animation timeline, its camera positions could be extracted from 
the MPEG7, allowing one to create a region of interest projection needed to extract a small subset from the 3D 
images, beginning with the low resolution tomograms and progressing to high resolution.  The MPEG7 could 
also be used to annotate 3D structural features of the tomogram as well as specific events and 3D structures in 
the animations. 
 
 The amalgamation of these datasets currently does not exist within a single data format.  Significantly, there 
is no EM format that is optimal for managing very large images and is extensible enough to assimilate other 
communities’ heterogeneous metadata.  Unfortunately, no generic standardized definition of scientific imagery 
exists, although the astronomical community has come closest in regards to their information frameworks, 
disparate image modalities and complex data analysis. 
 
 In a complex research pipeline this lack of a robust and uniform scientific image has resulted in fragmented 
definitions, incompatible software, and redundant data files, the aftermath being confusing conversions and basic 
incompatibilities.  Software tools for density map creation, map segmentation, hypothetical model assessment, 
visualization, and data integration have all been affected by this lack of simple image interchange and the near 
total disconnect of contextual metadata as it progresses through the pipeline.  Without a comprehensive and 
uniform definition of a scientific image, efficient use of the archived data and derivatives will be an ongoing 
fumble.  An urgent prediction is that if the images cannot be effectively designed and utilized for both archival 
and operational settings, the associated metadata has significantly less value. 
 
 Moreover, this comprehensive cryoEM data file must be designed in a manner that will be simple to describe, 
straightforward to maintain, and must be able to evolve as the scientific field grows and matures.  
 
 Finally, it is essential to seek out broad views, from both within and without the cryoEM and biological user 
communities, throughout the design and implementation so that the final system will incorporate the highest 
standards to serve the needs of both current and future scientists. 
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INTRODUCTION 
 
 At this time, different biological research communities are beginning to examine and adopt the Hierarchical 
Data Format (HDF) version five, particularly for activities involving data acquisition, visualization, and image 
deposition.  HDF is a high performance data storage and manipulation tool developed by the National Center for 
Supercomputer Applications to create and interact with large heterogeneous datasets.  In addition to being open 
source, HDF offers a number of significant features that will be difficult if not impossible to replicate by any 
other method; therefore HDF5 is the obvious choice for managing large scientific images. 
 
 Because each research community has different priorities, these communities’ metadata and related 
ontologies are frequently incompatible or irrelevant.  But, there is one type of data that forms the coin of the 
realm: the scientific image.  This basic form of information must be broadly and effectively defined in order to 
obtain compatibility across biological fields.  A primary concern is that different biological communities will 
adopt HDF and will define image implementations that are inherently conflicted and mutually incompatible; all 
of which must be avoided in order to allow maximum scientific benefit from the data. 
 
 To attain a desirable outcome, first it is absolutely necessary that different biological communities exercise 
their ability within HDF to reserve their data domains, thereby avoiding namespace conflict; second it is crucial 
to establish best practices that will lead to uniform definitions of scientific images within HDF.  By 
accomplishing these two tasks, the vast majority of scientific imaging by different biological communities will 
become co-existent and interpretable across inter-disciplinary research communities that use HDF. 
 
 Because of the limited use of HDF in biomedical research, the broad interest and need for data compatibility, 
and the simple nature of scientific images as implemented in HDF; the possibility of avoiding conflict and 
promoting cooperation is high. 

 
 

DEFINITIONS 
 
 1) A scientific image is an n-dimensional array of homogeneous pixels.   
 
 2) A picture element, the pixel, frequently consists of a single scalar component, but may consist of multiple 
components or channels, whose scalar or non-scalar values are direct image measurements, or computational 
results derived from measurements or simulations. 
 
 3) Images and the pixels have core metadata that define organization, sizes, units, and coordinate systems.   
 
 
 At this point, the scientific communities begin to functionally, operationally and theoretically diverge as to 
their non-image metadata.  It is necessary to explicitly link and assemble the user metadata and image metadata 
as an amalgamation of digital data by some means, the typical scenario being a single image file with an un-
extensible header preceding the contiguous block of pixels, the alternate second largest approach is to have two 
files, one containing metadata and the other containing pixels.  As the original image is circulated to other 
scientific communities, new and unique meta-datasets will be created and must be linked to maintain appropriate 
context and knowledge improvement, which is an Achilles heal of, if not all, scientific image data formats. 
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SPECIFICATION 
 
 ImageCore (IC) is a proposed methodology to organize images and arbitrary metadata 
within an HDF file.  It can be used as a generic image format, or it can be linked into existing 
image data formats that implement HDF. 

 
The key methods: 

1) Define a reserved HDF namespace for image-pixels using a simple naming convention. 
2) Associate images, pixels and metadata using the Resource Description Framework (RDF).  
3) Provide an optional reserved IC namespace for grouping adjunct user or application metadata. 
4) Provide integration protocols for images and metadata that exists in user or application namespaces. 

 
There are four HDF imageCore elements: 

1) An HDF root group “/imageCore/”, forming the primary IC namespace. 
2) A chronological RDF image log, having the reserved HDF dataset name “/imageCore/0”.  It is an nx4 

extensible table of time-stamped RDF values: 
i) The first column contains time-stamps that log the RDF entry.  The time-stamps conform to the 

standard ISO 8601, UTC date and time specification “YYYY-MM-DDThh:mm:ss.sZ”. 
ii) The second column contains RDF image subjects. The subject is a positive integer corresponding to 

an image dataset name that is located in the IC namespace “/imageCore/”. 
iii) The third column contains RDF image predicates.  There are three basic categories: IMAGE, LINK, 

and LOG. 
iv) The fourth column contains RDF image objects. 

 
3) An expandable number of N-dimensional images whose pixels are contained in HDF datasets. These pixel 

datasets have reserved HDF dataset names corresponding to positive integers that have no preceding zeros 
or symbols, for example “/imageCore/1”, “/imageCore/2”, and “/imageCore/314159”.  Image datasets 
may also exist in non-IC namespaces and these HDF pixel datasets will have naming conventions defined 
by application programs or user selections; in this case, the pixel datasets are linked into the 
“/imageCore/” group so as to have names corresponding to positive integers, functionally producing the 
same effect of having the images created in the IC namespace.  The positive integer image dataset names 
were selected to enforce bare simplicity and to maintain a neutral naming convention that is more easily 
interpretable across various languages and cultures.  

 
4) Optional metadata can be grouped in the IC namespace corresponding to the image datasets names. These 

adjunct metadata may contain any type of user datasets, groups, and attributes, such as CCP4 image 
format headers, MPEG7 annotation datasets, segmentation masks, or community specific metadata such as 
cryo-EM acquisition and reconstruction parameters.  The names of these adjunct metadata are a variant of 
the associate image dataset name by appending an asterisk to the name to create an adjunct group, for 
example “/imageCore/1*/animation.mpg”, “/imageCore/4*/camera.mp7”, “/imageCore/2*/OME.xml”, 
“/imageCore/3*/1atn.pdb”, or “/imageCore/4*/EMAN2/zz98.xml”. Metadata that are in non-IC 
namespaces can be associated to IC images through “/imageCore/0” RDF. 
 
 

 There are other minor HDF attributes that are attached to the HDF objects to make them compliant with 
existing HDF image and python strategies. These are referenced in the HDF5 Image and Palette Specification 
version 1.2, and appendix E of the Pytables version 2.0 user manual. 
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APPENDIX: TABLES 
 
 

/imageCore/0 RDF description 
TIMESTAMP SUBJECT PREDICATE OBJECT multi optional OBJECT

date&time + integer VL string VL string defined Description

ISO 8601 image ID IMAGE.chunking integer 1D array N y e.g., 64 64 64

ISO 8601 image ID IMAGE.compression text N y e.g., jpeg

ISO 8601 image ID IMAGE.dimensionNames text N N e.g., spatial, xyz, CTF

ISO 8601 image ID IMAGE.dimensionOrdering integer 1D array U y e.g., 1 -3 2

ISO 8601 image ID IMAGE.dimensionRank integer N N e.g., 3

ISO 8601 image ID IMAGE.dimensionSizes integer 1D array N N e.g., 3000 3000 3000

ISO 8601 image ID IMAGE.dimensionUnits text U N SI units or pixels

ISO 8601 image ID IMAGE.pixelDataLocation float 1D array N y e.g., 0.5 0.5 0.5

ISO 8601 image ID IMAGE.pixelModel text N N e.g., float float integer

ISO 8601 image ID IMAGE.pixelNames text U N e.g., density

ISO 8601 image ID IMAGE.pixels text N N URI

ISO 8601 image ID IMAGE.pixelSizes float 1D array U N e.g., .005 .004 .003

ISO 8601 image ID IMAGE.pixelUnits text U N e.g., electrons

ISO 8601 image ID LINK.xxx text y y URI

ISO 8601 image ID LOG.xxx text y y text string  
y=yes, n=no, u=update, xxx=user defined. 

 
Example 1-HDF Organization 

description HDF pathname comment

imageCore namespace /imageCore/

chronological RDF /imageCore/0

image pixels /imageCore/1 original 3D cryo-electron tomogram

optional adjunct group /imageCore/1*/

optional metadata /imageCore/1*/CryoEM.xml

image pixels /imageCore/2 subsample of /imageCore/1

image pixels /imageCore/3 subsample of /imageCore/2  
 

Example 2-HDF Organization integrating non-IC namespaces 
description HDF pathname comment

imageCore namespace /imageCore/

chronological RDF /imageCore/0

image pixels /imageCore/1 linked to /EMAN/Image1

optional adjunct group /imageCore/1*/

optional metadata /imageCore/1*/CryoEM.xml linked to /EMAN/CryoEM.xml

optional metadata /imageCore/1*/animation.mpg

optional metadata /imageCore/1*/camera.mp7

image pixels /imageCore/2 subsample of /imageCore/1

image pixels /imageCore/3 subsample of /imageCore/2

application namespace /EMAN/

application image /EMAN/Image1 original image

application metadata /EMAN/CryoEM.xml linked to /imageCore/3*/CryoEM.xml

application metadata /EMAN/hdr.ccp4

application namespace /Chimera/

application image /Chimera/image1/pixels_xyz linked to /imageCore/1

application image /Chimera/image1/pixels_xyz_2 linked to /imageCore/2

application image /Chimera/image1/pixels_xyz_4 linked to /imageCore/3
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APPENDIX: DISCUSSION 
 
Problems with existing image formats:  The vast majority of imaging formats are two dimensional, and therefore 
are unable to manage n-dimensional complexity.  The remaining formats have fixed assumptions tailored to their 
unique applications, such as 3D spatial, 2D+time, or RGB pixel models; and therefore cannot be adapted.  Existing 
cryo-EM formats are based on outdated file IO methods, such as fread and fwrite; making them unsuitable for very 
large datasets.  For the same reason, existing format designs do not transparently use compression, regional image 
subsets, and hetero-dataset integration.  Generally, they are un-extensible in situations outside their intended 
application and have sub-optimal IO performance. 
 
Design philosophy:  The creation of IC has been made after extended review of imaging designs and recommended 
best practices of various scientific, computational and archival communities; most notably existing cryo-EM 
formats, the International Virtual Observatory Alliance, National Information Standards Organization, and the Open 
Archives Initiative.  Several key requirements emerged, specifically the necessity for simplicity, operational high 
performance, ability to create and interact with large heterogeneous datasets, extensibility, incorporation of existing 
international standards when appropriate, public processes, open source software, and the need to establish 
community consensus. 
 
Large Image Data presents two difficult problems.  First is the sheer file size that must be processed through the 
disk drive IO bottleneck, reading the entire image can take considerable time.  Second is a caching problem, when 
the image on a disk drive far exceeds random access memory, the default method is virtual memory management; in 
this approach the entire image must be memory mapped, requiring a disk file duplication of the image in a transient 
operating system format.  Three methods can be used to better manage these problems: chunking, compression and 
multi-scale; none which are employed in existing cryo-EM formats.  Chunking regionally dissects a dataset into 
more manageable parts that can be randomly accessed.  Compression is useful to reduce the file size and minimize 
IO transfer time.  Multi-scale, or multi-resolution creates sub-sampled images that are useful in establishing regions 
of interest that can scale to local high resolution, obviating the need to read the entire image. 
 
Pixel Model: The current 3D cryo-EM pixel model is a single scalar value representing density.  What is needed is a 
more robust design that will allow for future developments, such as improved sensors or analytical data.  Also a 
limited pixel model produces a operational barrier for uniformly integrating other non-EM communities’ images. 
 
Open Source: There is a general consensus in scientific academic communities that open source software is 
preferable because of its accessibility and transparency.  This becomes an imperative when the scientific data 
products are destined for public repositories, but there are exceptions such as Microsoft Word or Adobe PDF 
documents, whose use are ubiquitous and convertible to other formats. 
 
Text: XML and RDF can utilize Unicode; for simplicity IC uses a restricted case of ASCII characters for RDF 
predicates.  It would be desirable to make some of the specification multilingual through the use of Unicode object 
values, thereby allowing future scientists to make more accurate observations in their native languages.  In order to 
implement this may require the direct use of XML as objects in the case of names and descriptions. 
 
HDF is a unique technology suite that makes possible the management of extremely large and complex data 
collections.  It has been developed over a 20-year period through the support of NCSA, NSF, and NASA.  The 
HDF5 technology suite is designed to organize, store, discover, access, analyze, share, and preserve diverse, 
complex data in continuously evolving heterogeneous computing and storage environments. The HDF5 data model, 
file format, API, library, and tools are open and distributed without charge.  HDF5 supports all types of data stored 
digitally, regardless of origin or size.  Petabytes of remote sensing data collected by satellites, terabytes of beamline 
datatsets, and megabytes of high-resolution MRI brain scans are stored in HDF5 files, together with metadata 
necessary for efficient data sharing, processing, visualization, and archiving. The HDF Group provides a unique 
suite of technologies and supporting services that make possible the management of large and complex data 
collections. Its mission is to advance and support HDF technologies and ensure long-term access to HDF data. 
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XML: Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879). 
XML is playing an increasingly important role in the textual exchange of a wide variety of metadata.  XML is well 
suited for communities to define and exchange complex metadata due to its self-describing design, but is poorly 
suited for manipulating large binary datasets that require parallel or random access.  To deal with this problem there 
have been several data frameworks that have sought a balanced integration of XML and HDF in order to benefit 
from the strong features of each.  XML is a product of the World Wide Consortium (W3C) and is hosted by the 
Massachusetts Institute of Technology Laboratory for Computer Science in the United States, at the European 
Research Consortium for Informatics and Mathematics in Sophia-Antipolis in France, and at the Keio University 
Shonan Fujisawa Campus in Japan. 
 
RDF: The Resource Description Framework (RDF) integrates a variety of applications from library catalogs and 
world-wide directories to syndication and aggregation of news, software, and content to personal collections of 
music, photos, and events using XML as an interchange syntax. The RDF specifications provide a lightweight 
ontology system to support the exchange of knowledge on the Web.  Because of its simplicity and extensibility it 
was chosen as the primary means to centrally associate image metadata.  RDF is a product of the W3C. 
 
Integrated format specifications and API:  The HDFgroup recommends that an application-programming 
interface accompanies the format specifications.  This has several beneficial results: it enforces adherence, provides 
better testing, enhances compatibility, eases the burden on application programmers, produces an API reference 
frame based on familiar community norms, and masks the complexities of HDF. 
 
Performance Testing is an absolute necessity because of the underlying requirement of high performance.  It will 
be essential to establish a suite of tests that mirror real world scenarios.  Such tests will include simulated datasets 
and actual operational datasets.  Statistical metrics concerning entropy and compression will have to be established.  
Comparisons across platforms and networks will be needed. 
 
Verification Testing is usually desirable for any complex specification.  Software is needed that can examine an IC 
file and determine compliance, providing detailed notification of non-compliance.  Generally, compliance software 
must examine if the 1) IC-RDF is properly formed, 2) IC-RDF IMAGE.rrr objects properly associate with the 
underlying HDF constructs, and 3) IC-RDF LINK.xxx objects properly associate to specified metadata. 
 
 
IMAGE.rrr, such that rrr indicates reserved tags defined by the IC specification.  There are no user defined tags. 
 
LINK.xxx, such that xxx indicates user extensible tags; some tags have been reserved. The RDF object is a URI 
pointing to metadata. 
 
LOG.xxx, such that xxx indicates user extensible tags; some tags have been reserved. The RDF object is a text 
string.   
 
 
IMAGE.chunking is an optional predicate that describes the size of chunks used by HDF5; its value is set when the 
image is created.  Chunking regionally subsets a dataset, such as a tile for 2D or sub-volume for 3D.  Chunking is 
typically used in combination with compression.  Its size is equal to IMAGE.dimensionRank. 
 
IMAGE.compression is an optional predicate that describes the compression and version used by HDF; its value is 
set when the image is created.  HDF5 currently supports only GZIP and SZIP compression. However, additional 
compression can be added easily. 
 
IMAGE.dimensionNames describes the axis names corresponding to IMAGE.dimensionSizes. If the names are 
undefined, the default is ‘pixels’ for each component. The sequence is based on IMAGE.dimensionOrdering default 
ordering. 
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IMAGE.dimensionOrdering is an optional predicate that notes the recommended change in the dimension 
ordering of pixels.  Sometimes images are created with unknown symmetry; later additional information (e.g., PDB) 
can conclusively establish the correct symmetry.  For example, a left-handed dataset can noted as right-handed pixel 
set by setting the IMAGE.dimensionOrdering to {1,2,-3}, or the XY image planes can be diagonally flipped by 
setting the IMAGE.dimensionOrdering as {2,1,3}.  It will be necessary to have an API that will allow arbitrary order 
in which pixel sequences are extracted from the HDF disk file into computer RAM can be manipulated. The default 
IMAGE.dimensionOrdering is {1, …, n}, such that n is equal to IMAGE.dimensionRank. 
 
IMAGE.dimensionRank describes the rank of the image and size of related Image.rrr arrays. 
 
IMAGE.dimensionSizes describes the size of each dimension.  Its size is equal to IMAGE.dimensionRank. The 
sequence is based on IMAGE.dimensionOrdering default ordering. 
 
IMAGE.dimensionUnits describes the axis unit values corresponding to IMAGE.dimensionSizes. If the names are 
undefined, the default is ‘pixels’ for each component. The sequence is based on IMAGE.dimensionOrdering default 
ordering. 
 
IMAGE.pixelDataLocation defines the location of data relative to pixel space.  A typical assumption is in the 
center, but the vertex or the face of a picture element has scientific applications.   Assuming the 3D pixel is 
orthorhombic (α=β=γ=90°) implies the data could be located at one of 8 vertices, or on one of 6 faces, or within any 
point in the pixel space.  This matter is important in finite element analysis, segmentation, docking of datasets, and 
the visualization of datasets. The default IMAGE.pixelDataLocation is {0.5, …, 0.5}, such its size is equal to 
IMAGE.dimensionRank. 
 
IMAGE.pixelModel is an optional predicate that describes the HDF datatypes classes that are used by the image, 
except for the compound complex limitation imposed by current version of Pytables. 
 
IMAGE.pixelNames describes the data names corresponding to IMAGE.pixelModel. If the names are undefined, 
the default is ‘pixels’ for each component. 
 
IMAGE.pixels describes the original HDF location of the image’s pixels, which will be in the IC namespace or user 
namespace. 
 
IMAGE.pixelSizes describes the unit size of a pixel based on IMAGE.dimensionOrdering default ordering.  Its size 
is equal to IMAGE.dimensionRank. 
 
IMAGE.pixelUnits describes the data units corresponding to IMAGE.pixelModel.  If the units are undefined, the 
default is ‘pixels’ for each component. 
 
 
LINK.animation.xxx links to MPEG 1, 2, & 4 animations to an image; xxx indicates user extensible tags. 
 
LINK.application.xxx links application-specific metadata to an image; xxx indicates user extensible tags. 
 
LINK.header.xxx allows one to re-create a specific simple image xxx format by combining the unaltered ‘xxx’ data 
format header with the image dataset.  Customarily, ‘xxx’ is the filename extension of the resulting combination. 
 
LINK.mask.xxx  links an image that can segment another image, most simply using an AND operator with an 
image that has the same rank and dimensions.  This predicate & related datasets require further development, 
particularly in regards to multiscale and image-subsets; xxx indicates user extensible tags. 
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LINK.mime.xxx links MIME metadata to an image; xxx indicates user extensible tags. 
 
LINK.mpeg7.xxx links application-specific metadata to an image; xxx indicates user extensible tags. 
 
LINK.multiscale.xxx links images of different resolution to an image; xxx indicates user extensible tags. 
 
LINK.transformation.xxx links image transformations to image datasets.  Image transformations and 
corresponding metadata transformations can become extremely complex.  Regardless of the RDF object values of 
the RDF predicate ‘IMAGE.dimensionOrdering’, the initial coordinate assumption of an image is that the first pixel 
in computer RAM is located at the origin and the remainder of the image is in non-negative space.   
 
‘LINK.transformation.base’ is reserved for preferred orientations, such as ‘LINK.transformation.base_3f’.  
 
Significantly, pixel ordering is computationally simple and coordinate orientation changes can be computationally 
intense; therefore 90-degree rotations can be simply made changing the dimension order.   Further, 3D graphics 
hardware is fundamentally designed for XYZ right-handed coordinate systems; being able to assemble pixel datasets 
in various contiguous organizations is crucial for performance, particularly to solve the proper coupling of 
experimental datasets and visualization tools.  Also, there are a variety of scientifically desirable coordinate 
transformation systems and methods, such as Cartesian, polar, Fourier, Euler angles, quaternion, cosine matrices, 
and orientation preceding translation; as well as unique reference frames such as world, camera, and object. 
 
Multiple sequential or compound parallel coordinate transformations are not commutative, and several methods are 
frequently possible to achieve identical results, which is usually left to the imagination of the scientist to select these 
paths.  Therefore it is critical that each step of a transformation pipeline be documented.  This diversity will require 
some form of registry system that contains frequently used transforms and also allows users to dynamically create 
new transforms and log them with the image.  
 
 
LOG.citation describes published citations utilizing the image. 
 
LOG.compliance describes software & data compatibility.  The RDF object would contain sufficient information to 
describe 1) what standard and software that image was written by (e.g., ‘imageCore v1, IC-API v1.3, EMAN2 
v2.1’), and 2) whether the image is read-compatible with other image formats (e.g., ‘Chimera map v1’). 
 


